Impulse Control of Multidimensional Jump Diffusions in Finite Time Horizon

نویسندگان

  • Yann-Shin Aaron Chen
  • Xin Guo
چکیده

This paper analyzes a class of impulse control problems for multidimensional jump diffusions in the finite time horizon. Following the basic mathematical setup from Stroock and Varadhan [Multidimensional Diffusion Processes, Springer-Verlag, Heidelberg, 2006], this paper first establishes rigorously an appropriate form of the dynamic programming principle. It then shows that the value function is a viscosity solution for the associated Hamilton–Jacobi–Bellman equation involving integro-differential operators. Finally, under additional assumptions that the jumps are of infinite activity but are of finite variation and that the diffusion is uniformly elliptic, it proves that the value function is the unique viscosity solution and has W (2,1),p loc regularity for 1 < p < ∞.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impulse Control of Multidimensional Jump Diffusions

This paper studies regularity properties of the value function for an infinite-horizon discounted cost impulse control problem, where the underlying controlled process is a multidimensional jump diffusion with possibly ‘infinite-activity’ jumps. Surprisingly, despite these jumps, we obtain the same degree of regularity as for the diffusion case, at least when the jump satisfies certain integrab...

متن کامل

On the Impulse Control of Jump Diffusions

Regularity of the impulse control problem for a nondegenerate n-dimensional jump diffusion with infinite activity and finite variation jumps was recently examined in [M. H. A. Davis, X. Guo, and G. Wu, SIAM J. Control Optim., 48 (2010), pp. 5276–5293]. Here we extend the analysis to include infinite activity and infinite variation jumps. More specifically, we show that the value function u of t...

متن کامل

A Proof of the Smoothness of the Finite Time Horizon American Put Option for Jump Diffusions

We give a new proof of the fact that the value function of the finite time horizon American put option for a jump diffusion, when the jumps are from a compound Poisson process, is the classical solution of a quasi-variational inequality and it is C across the optimal stopping boundary. Our proof only uses the classical theory of parabolic partial differential equations of Friedman (1964, 2006) ...

متن کامل

Combined Singular and Impulse Control for Jump Diffusions

In this work we present and investigate the combined singular and impulse control problem for jump diffusions. Such problems frequently arise in finance, for instance, when both fixed and proportional transaction costs are considered. A verification theorem for the generalised combined singular and impulse control is formulated and proved. The verification theorem provides sufficient conditions...

متن کامل

Impulse control problem on finite horizon with execution delay

We consider impulse control problems in finite horizon for diffusions with decision lag and execution delay. The new feature is that our general framework deals with the important case when several consecutive orders may be decided before the effective execution of the first one. This is motivated by financial applications in the trading of illiquid assets such as hedge funds. We show that the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Control and Optimization

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2013